An Optimization Framework for Generalized Relevance Learning Vector Quantization with Application to Z-Wave Device Fingerprinting

نویسندگان

  • Trevor J. Bihl
  • Michael A. Temple
  • Kenneth W. Bauer
چکیده

Z-Wave is low-power, low-cost Wireless Personal Area Network (WPAN) technology supporting Critical Infrastructure (CI) systems that are interconnected by government-to-internet pathways. Given that Z-wave is a relatively unsecure technology, Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting is considered here to augment security by exploiting statistical features from selected signal responses. Related RF-DNA efforts include use of Multiple Discriminant Analysis (MDA) and Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifiers, with GRLVQI outperforming MDA using empirically determined parameters. GRLVQI is optimized here for Z-Wave using a full factorial experiment with spreadsheet search and response surface methods. Two optimization measures are developed for assessing Z-Wave discrimination: 1) Relative Accuracy Percentage (RAP) for device classification, and 2) Mean Area Under the Curve (AUCM) for device identity (ID) verification. Primary benefits of the approach include: 1) generalizability to other wireless device technologies, and 2) improvement in GRLVQI device classification and device ID verification performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Functional Relevance Learning in Generalized Learning Vector Quantization

Relevance learning in learning vector quantization is a central paradigm for classi cation task depending feature weighting and selection. We propose a functional approach to relevance learning for highdimensional functional data. For this purpose we compose the relevance pro le by a superposition of only a few parametrized basis functions taking into account the functional character of the dat...

متن کامل

Generalized Learning Graph Quantization

This contribution extends generalized LVQ, generalized relevance LVQ, and robust soft LVQ to the graph domain. The proposed approaches are based on the basic learning graph quantization (lgq) algorithm using the orbifold framework. Experiments on three data sets show that the proposed approaches outperform lgq and lgq2.1.

متن کامل

Learning Matrix Quantization and Variants of Relevance Learning

We propose an extension of the learning vector quantization framework for matrix data. Data in matrix form occur in several areas like gray-scale images, time dependent spectra or fMRI data. If the matrix data are vectorized, important spatial information may be lost. Thus, processing matrix data in matrix form seems to be more appropriate. However, it requires matrix dissimilarities for data c...

متن کامل

The Mathematics of Divergence Based Online Learning in Vector Quantization

We propose the utilization of divergences in gradient descent learning of supervised and unsupervised vector quantization as an alternative for the squared Euclidean distance. The approach is based on the determination of the Fréchet-derivatives for the divergences, wich can be immediately plugged into the online-learning rules.We provide themathematical foundation of the respective framework. ...

متن کامل

Generalized Relevance LVQ for Time Series

An application of the recently proposed generalized relevance learning vector quantization (GRLVQ) to the analysis and modeling of time series data is presented. We use GRLVQ for two tasks: first, for obtaining a phase space embedding of a scalar time series, and second, for short term and long term data prediction. The proposed embedding method is tested with a signal from the wellknown Lorenz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017